skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mangum, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High-throughput combinatorial synthesis of Al1−xRExN (RE = Pr, Tb) thin films with 0 <x< 0.4 was performed to assess composition-phase-property relationships in an emerging materials family. 
    more » « less
    Free, publicly-accessible full text available December 12, 2025
  2. Ferroelectricity enables key modern technologies from non-volatile memory to precision ultrasound. The first known wurtzite ferroelectric Al 1− x Sc x N has recently attracted attention because of its robust ferroelectricity and Si process compatibility, but the chemical and structural origins of ferroelectricity in wurtzite materials are not yet fully understood. Here we show that ferroelectric behavior in wurtzite nitrides has local chemical rather than extended structural origin. According to our coupled experimental and computational results, the local bond ionicity and ionic displacement, rather than simply the change in the lattice parameter of the wurtzite structure, is key to controlling the macroscopic ferroelectric response in these materials. Across gradients in composition and thickness of 0 < x < 0.35 and 140–260 nm, respectively, in combinatorial thin films of Al 1− x Sc x N, the pure wurtzite phase exhibits a similar c / a ratio regardless of the Sc content due to elastic interaction with neighboring crystals. The coercive field and spontaneous polarization significantly decrease with increasing Sc content despite this invariant c / a ratio. This property change is due to the more ionic bonding nature of Sc–N relative to the more covalent Al–N bonds, and the local displacement of the neighboring Al atoms caused by Sc substitution, according to DFT calculations. Based on these insights, ionicity engineering is introduced as an approach to reduce coercive field of Al 1− x Sc x N for memory and other applications and to control ferroelectric properties in other wurtzites. 
    more » « less
  3. Abstract Ternary metal‐oxide material systems commonly crystallize in the perovskite crystal structure, which is utilized in numerous electronic applications. In contrast to oxides, there are no known nitride perovskites, likely due to the competition with oxidation, which makes the formation of pure nitride materials difficult and synthesis of oxynitride materials more common. While deposition of oxynitride perovskite thin films is important for many electronic applications, it is difficult to control oxygen and nitrogen stoichiometry. Lanthanum tungsten oxynitride (LaWN3−δOδ) thin films with varying La:W ratio are synthesized by combinatorial sputtering and characterized for their chemical composition, crystal structure, and microstructure. A three‐step synthesis method, which involves co‐sputtering, capping layer deposition, and rapid thermal annealing, is established for producing crystalline thin films while minimizing the oxygen content. Elemental depth profiling results show that the cation‐stoichiometric films contain approximately one oxygen for every five nitrogen (δ = 0.5). Synchrotron‐based diffraction indicates a tetragonal perovskite crystal structure. These results are discussed in terms of the perovskite tolerance factors, octahedral tilting, and bond valence. Overall, this synthesis and characterization is expected to pave the way toward future thin film property measurements of lanthanum tungsten oxynitrides and eventual synthesis of oxygen‐free nitride perovskites. 
    more » « less